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Expressions are obtained for the limiting behavior of ensemble expectations, as 
functions of coverage, of the number of simultaneous occurrences of various 
structures when indistinguishable single particles are arranged on a two- 
dimensional lattice. For the general expressions obtained no restrictions are 
placed on the geometrical nature of the lattice. Averages for specific geometri- 
cal arrays, such as rectangular and hexagonal arrays, may be calculated directly 
from the general results. 

1. I N T R O D U C T I O N  

The  t r ea tment  of g a s - s o l i d  adso rp t ion  in s tat is t ical  mechan ics  re- 
quires  a cons ide ra t ion  of  s t ructures  on  two-d imens iona l  latt ices.  Specif ic  
s t ructures  have  been  e x a m i n e d  in prev ious  studies.  In  the presen t  p a p e r  a 
more  genera l  a p p r o a c h  is p u r s u e d  a n d  the fo l lowing ques t ion  inves t igated:  

W h a t  is the ensemble  expec ta t ion ,  as a func t ion  of  coverage,  of the  
n u m b e r  of s imul taneous  occur rences  of var ious  s t r uc tu r e s  when  indis-  
t inguishable  single par t ic les  a re  d i s t r ibu ted  on  a lat t ice? 

The  mode l  a s sumed  for the  adso rben t  surface  is that  of a la t t ice  A 
with  a f ixed n u m b e r  N of  sites. A d s o r p t i o n  occurs  as ind is t inguishab le  
single par t ic les  of a classical  gas  of a single chemica l  species col l ide  wi th  
and  are  b o u n d  to the sites of the  latt ice.  Each  site a c c o m m o d a t e s  exac t ly  
one  a d s o r b e d  par t ic le  a n d  a d s o r b a t e  par t ic les  a re  f o u n d  on the la t t ice  on ly  
at  the sites. 

2. E N S E M B L E  E X P E C T A T I O N S  

2.1. Defini t ions.  A lattice A is here  t aken  to be  a col lec t ion  of  N 
subsets  of  the usual  Car t e s i an  p lane .  The  e lements  of the col lect ion are  
ca l led  cells or sites. A n  array is a la t t ice  together  wi th  a pa r t i cu l a r  
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geometrical arrangement of the sites. For example, an R • Q rectangular 
array is a lattice of cardinality N =  RQ whose elements are small rectangles 
which are arranged in R rows and Q columns to form a larger rectangle. In 
the following discussion we shall assume, for the sake of simplicity, that R 
is never equal to Q. 

The set of all subsets of a lattice may be partitioned by the equiva- 
lence relation of congruence. A structure E is taken to be any one of these 
disjoint equivalence classes. All elements of a structure have the same 
cardinality, which will be denoted by n~. As an example, an r• rectangu- 
lar structure Y, on an R •  Q rectangular array is that structure whose 
elements form rectangles with r rows and q columns or with q rows and r 
columns. Miyazaki has shown that in this case the cardinality of Z, 
denoted by ~(Y.), is given by 

[ ( R - r +  1 ) ( Q - q +  1 ) + ( R - q +  1 ) ( Q - r +  1) 

t ( R - r +  1 ) ( Q - r +  1) 

if r=/=q 

if r=q 

(2.1) 

Suppose that m particles have been distributed on the lattice A. The 
structure Z is said to occur with occupancy a in this distribution of 
particles if a of the m particles are distributed on the sites belonging to any 
one element of Z. For example, on an R • Q rectangular array a nearest- 
neighbor pair occurs whenever a 1 • 2 rectangular structure occurs with 
occupancy a --- 2. 

The set of configurations of two structures, E 1 and Y'2, is the set U~,, z2 
defined by 

U~,,~ = ( z = o  I Uo2: o I EY. 1 and o 2 E~ ,2)  

The set of configurations of two structures need not itself be a structure on 
the lattice A; however, U~.,z 2 may be partitioned into subsets of distinct 
cardinalities. In particular, let F denote the set of those configurations 
having cardinality nz, +n~2, and let F'  be the complement of F in Uz~,~ 2. 
The elements of F are called nonoverlapping, while those of F' are said to 
be overlapping. In general, we will say that subsets al in Y'1 and 02 in Y'2 are 
nonoverlapping if their union 01 U 02 lies in F and are overlapping if their 
union lies in F'. Note that if n ,  denotes the cardinality of an arbitrary 
element ~" in U ~ , ~  then n~ =n~,  + n ~  for ~- in I'; otherwise, n~ is strictly 
less than the sum n ~  + n~ .  Note also that the cardinality of F', which we 
shall denote by p(I"), must be less than Nn~ny_ 2. 

Two structures, Z1 and Z2, are said to occur simultaneously with 
occupancies a I and et 2, respectively, in a distribution of m particles on the 
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lattice if there is a configuration ~" = o 1 U o2 such that a I of the sites of 01 are 
occupied and 0/2 of the sites of 0 2 are occupied. In this case the two 
structures are said to occur simultaneously in the configuration "r. For  the 
remaining part  of this paper  the phrase "with occupancies a I and 0/2" will 
be omitted, as in this last definition, whenever the condition is clearly 
implied by the context. Let the number  of sites of the configuration ~- that 
are occupied in the distribution be denoted by 0/~. If z is an element of F, 
then a ,  =ol I + 0 / 2 ;  otherwise, a T may be either less than or equal to the sum 

0/I --F 0/2" 
The extension of the above definitions to the set of configurations of l 

structures, Y~l,.--, Zt, and to the simultaneous occurrence of structures 
El . . . . .  E~ with occupancies 0/1 . . . .  , a t is straightforward. 

The configurational ensemble S,,(A) for the distribution of m particles 
on a lattice A of cardinality N is a set of duplicates of A, each with a 
different distribution of the m particles among the N sites. The cardinality 
of $, ,(A) is (~) .  We may  consequently consider Sin(A) as a sample space 
whose points are each assigned the equal a priori probabili ty ( ~ )  -1 

For  each element of $,,(A), the expected number  of particles at any 
site is m/N.  This result may  be calculated as an ensemble average per site 
in the following way. The number  of times a fixed site occurs occupied in 
the ensemble is the number  of arrangements of the remaining m - 1  
particles among the remaining N -  1 sites. Since there are N single sites on 
the lattice, the ensemble average per site is given by 

X~A \ m - 1  m--1  m 
p . . . . .  ( 2 . 2 )  

(m 
The ensemble average (2.2) may  be generalized to the ensemble 

expectation of the number  of simultaneous occurrences of l structures 
E 1 . . . .  , E t with occupancies a l . . . . .  at, respectively. The generalization is 
expedited by the introduction of certain random variables. The variable 
X~, ..... :z, is taken to be that random variable which assumes the value 1 on 
those elements of the ensemble for which E 1 . . . . .  E 1 Occur simultaneously 
in the configuration ~- and the value zero otherwise. The total number  of 
simultaneous occurrences of E ! . . . . .  E z is then given by the random varia- 
ble 

. . . . . .  . . . . . .  
, r  

where the summation ranges over the set U:~ ...... :~, of all configurations. 
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W e  now cons ider  the to ta l  n u m b e r  of s imul taneous  occur rences  
th roughou t  the ent ire  ensemble  of s t ructures  E 1 . . . .  , Y~t in the  conf igura t ion  
,r. If z is a nonove r l app ing  conf igura t ion ,  then a ,  is well  def ined:  a ,  = 

a I + �9 �9 �9 + a l. Moreover ,  if ~ = o~ U o2 U �9 �9 �9 U at, then  exact ly  a I of the  sites 
of o~ mus t  be  occupied,  exac t ly  a 2 of the sites of 0 2 mus t  be  occupied ,  a n d  
so on. The  n u m b e r  C~ of ways  of a r rang ing  a ,  of the m par t ic les  in z a n d  
m - a ,  of the par t ic les  on  the r ema in ing  sites of A is therefore  

l 

C'r= m--otl .]k=l ~ Otk ]'  
f E E  

No te  tha t  C~ is the same for all  conf igura t ions  "r in F. W e  will  deno te  this 
value  by  C r.  If ~- is an  e lement  of F ' ,  on  the o ther  hand ,  a ,  m a y  take  on  a 
range  of values so tha t  C, m a y  be  wr i t t en  as a sum of terms each less than  
or  equal  to C r.  Since there can  be no  more  than  2"=,+"=2+'"+"~, - ' ,  such 
terms,  we therefore  o b t a i n  

C, < 2"~,+"=2+"' +n~ , - " 'C  r ,  ~ E F '  

The  expected n u m b e r  of s imul taneous  occur rences  of  Z 1 . . . . .  Z t is 
given by  

"r 

where  the summat ion  ranges  over  the  set of all conf igura t ions .  W h e n  ~" is 
an  e lement  of F, each  te rm C r ( 2 )  - l  is an  e lement  of the mul t ihype rgeo-  
met r ic  d is t r ibut ion:  

I 
, o , +  + o , - 1 , , o , ,  

(m k ~ 2  [ n z l " [ "  " " " "~-n~,k 

, o , + .  +o, 

The  m e a n  g z  ...... z, of the r a n d o m  var iab le  Y~ ...... :~, =N- tX :~  ...... ~, is the 
dens i ty  of  s imul taneous  occur rences  of  E I . . . . .  ~;t p e r / - t u p l e  of  la t t ice  sites, 
a n d  is therefore  the  ensemble  expec ta t ion  which  general izes  (2.2): 

Ix:~ ...... :~, = N - t E (  X:~ ...... :~,) 

T 
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The task now at hand is the evaluation of the limit of/*z . . . . . .  '~1 as m 
and N each becomes large in such a way that the coverage O=m/N 
remains constant. This limit will be denoted by a plain limit symbol: 

/~z, ..... :~,(0) = lira/~:% ..... ~, 

2.2. Computation of Ensemble Expectations. We first consider the case 
l=2  and Y~j :~E 2. Since the set {F, F'} forms a partition of U~1,:%, we have 

/s s c~(N)-'-~- s c~(N) -1 
cEF r@I" 

The second term may be estimated by recalling that each element of the 
multihypergeometric distribution has magnitude less than unity, so that 

Thus 

[ [ 1 lim N -2 ~ G .<lim N -2 s 2"=,+"== -"" 
(rer') (r~r') 

< 2n=, +n=21im[ u-=v(r')]  

~< 2 nx, +"=dim[ N -inane=] 

=0 

I '1 /,:%,~2(0)=1im N -a ~ C, 
(rer) 

For r ~ F ,  n, =n~, +n~: and a,  = a  1 +a2; therefore 

[ -l(nx')(n:~21(N-n:r"-n:~2)u(F) l [IE,,22(0)=lim N-2(N) ~ loll Ol 2 ]~ m - - o t , - a z  

where v(F) is the cardinality of F. On the other hand 

lira[ N - 2 (  m N ) - I (  n~, ) (  na~ 2 )(  N 2 2 2 -  :2~2 )v (F ' ) ]=0  

Let the cardinality of the set U:~,,z2 of configurations be denoted by 
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v(U~,,x~). Then since cardinality is an additive set function on finite sets, 

t zx , . x2(O)=l imIN-2(N~- l{nXl l{nx21[N-nx ' -nx2)v(Uz , .Y2)  \ a I , \  a 2 ,k m - a  l - a  2 

=(nxl](nx~]O~'+~(1-O)"X'+'x:-"'-":lim[ v(Ux''x2) J \  a, ]k Or2 ] N 2 

(2.4) 

When A is an array and Xl and ~2 are structures on A, the evaluation 
of the limit in (2.4) is made possible by the following results. 

Theorem 1. If E l =~:Z2, then lim[N-2v(Ux,,x2)]=lim[N-2V(Xl x 
XOl. 

Proof. We first introduce some notation. Recall that F is the set of 
nonoverlapping elements of Ux,,x~ and F' is the complement of f in 
Ux,,x c Define F~ to be that set of ordered pairs (ap  02) with Z1 in a 1 and 02 
in E2, such that a~ Ua 2 is an element of F. Let F" be the complement of F. 
in E 1 X X 2. 

Since A is an array, the perimeter of any subset of A is well defined; 
moreover, since each structure is a congruence class, each element of the 
structure has the same perimeter, which we shall denote by s x. Let ~ be 
that subset of F whose elements have perimeters less than sx, + s x .  ~2 is 
called the set of contiguous elements of U~,,x ~. As above let ~x be that set 
of ordered pairs (Ol, e2) in I'~ such that 01 002 is an element of ~. Subsets 
o I in Y.~ and Z2 are also called contiguous if their union o 1 U 02 lies in ~. It 
follows that the correspondence from (Yl x Yz)\F~ tO ~ )  onto F\f l  defined 
by (0,, a2)~-~a I U 02, is onto and one-to-one. 

The existence of a bijection between (Xl xXz)\(F~ U~2~) and F\f l  
implies that the cardinalities of the two sets are the same: 

Therefore 

 [(Xl Uex)] = 

• + 

The cardinalities of f~x and F~ have the upper bounds: 

max[ s 2n 2 ( 2) ] 
v ( I " )  ~< max[ nx n.~ff( ~l), n.~n.~2v( Y2) ] 
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It now follows that 

lim[ N-2v(E1 • Y~E)-N-Ev(F) ] = 0  

Equivalently we may write 

lim[ N-2v(~ , ,  • Y.2) ] = lim[ U - 2 v ( F )  ] = lim[ N - 2 v (  Uz~., ~2) ] 

Now the cardinality of the Cartesian product of finite sets is the 
product of their respective cardinalities. Thus 

_ nz~ n ~  a1+~2 

When A is an R x Q rectangular array with Z 1 an r I •  (rl @ql) rectangu- 
lar structure and Z 2 an r 2 x q2 (r 2 ~ q 2 )  rectangular structure, application 
of (2.1) yields that, as R and Q both become large and as the ratio 
m / R Q  = 0 remains constant, 

Note that here the two-point average depends only on the element cardi- 
nalities and occupancies of the structures involved. 

The general formula f o r / ~ ,  ..... y~,(0) may be determined by following 
a similar line of reasoning to obtain the smoothed /-point average for 
structures E1 . . . . .  E 1 occurring simultaneously with occupancies oq . . . . .  a t, 
respectively: 

_ n:~l 
. . . . . .  (o,) Cn 10~ 

X ( 1 - O ) ( ~ ' - ~ O + " + ( ~ ' - ' ~ ' ) l i m [ ~ ( ~ ! ~ l ' " l i m [ V ( Y ' l ) ~ l  

(2.5) 

In the case of a rectangular lattice with rectangular structures ~x . . . . .  Zt of 
dimensions r 1 • ql . . . . .  rl • qt, respectively, we have 

I~  ...... ~ , ( O ) = 2 ' ( r l q t l . . . ( r t q t l o  ~+'''+~' 
\ al I \ a2 ! 

x (1 - O) (r'q' -~')+ ' "  +(r~q,-~,) (2.6) 
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where r i ~ qi for i = 1,2 . . . . .  l. Again the limit has been taken as both R and 
Q become large. 

Theorem 2. If E l = E 2, then lim[N-Zv(Uzl,X)] = �89 x 

Xl)l. 

Proof  Again consider the correspondence (ol, o2)--->o I U o  2 for (ol, o2) 
in (Y'I • EI)\(F~ U f~x). If (o l, o2) and (o[, 6 )  are both in (Y~I • E2)\(F~' O 
~x), and if o lUe2=o~Ua~,  then either (el, O2)=(o~,o~) or (o~,e2)= 
(o~, o~). The correspondence is therefore two-for-one on (X 1 •  U 
fix) and the result follows as in the proof of Theorem 1. 

The ensemble average per site for the occurrence of a structure X 
twice simultaneously, once with occupancy o[ 1 and once with occupancy 
a 2, is therefore 

1 l } (2.7) 
fil'X,X(O) = "2\ a 1 1~ 012 

When A is a rectangular array and E an r •  ( r ~ q )  rectangular structure 
on A, the limiting average is 

. x  y,(O)=2(rq)(rq)o~176 2 

In particular, for the simultaneous occurrence of two-nearest neighbor 
pairs (n x =2, a 1 = a z =2): 

p,X, y.(O) = 204 

Let o I . . . . .  a l be l nonoverlapping, noncontiguous elements of Z. Un- 
der the correspondence (01 . . . . .  Ol)~--~olU . . .  Uot, there are l! /-tuples 
which are mapped into the same image set. The correct generalization of 
(2.6), therefore, to l simultaneous occurrences of the structure Y. with 
occupancies a l , . . . ,  a t is 

ny. 
, .  ..... . , o , _ -  

x ( 1 - O )  ~"~-~' . . . . .  ~'{ l i m [ - ~  ] }t (2.8) 

When X is an r •  rectangular structure on a rectangular array, (2.7) 
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becomes 

2 t { rq rq ~ + 

87 

" + ' ~ , ( 1 - 0 )  l r q - a '  - . . . .  e t ,  (2 .9)  

3. CONCLUSION 

The limiting behavior of the /-point ensemble expectations of the 
number of simultaneous occurrences of l structures when indistinguishable 
single particles are distributed on a lattice has been calculated in (2.5) and 
(2.8). The expressions involve no restrictions on the lattice geometry. 
Averages for various structures on specific geometrical arrays, such as 
rectangular and hexagonal arrays, may be calculated directly from the 
general results. 

It is also worth remarking that even though the lattice A has here been 
taken to be two-dimensional, the method employed in calculating the 
/-point expectations may be immediately generalized to lattices in higher 
dimensions. 
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